The Lifespan of Solutions to Nonlinear Systems of High Dimensional Wave Equation

نویسندگان

  • Vladimir Georgiev
  • Hiroyuki Takamura
چکیده

OF HIGH DIMENSIONAL WAVE EQUATION Vladimir Georgiev1 and Hiroyuki Takamura2 and Zhou Yi3 1Dipartimento di Matemati a "L.Tonelli, Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy. e-mail: georgiev dm.unipi.it 2Institute of Mathemati s, University of Tsukuba Tsukuba Ibaraki 305-8571, Japan. e-mail: takamura math.tsukuba.a .jp 3Institute of Mathemati s, Fudan University Shanghai 200433, China. e-mail: yizhou fudan.a . n Abstra t In this work we study the lifespan of solutions to p-q system in the higher dimensional ase n ≥ 4. A suitable lo al existen e urve in the p-q plane is found. The urve hara terizes the lo al solutions in Sobolev spa e H with s ≥ 0. Further, some lower and upper bounds of the lifespan of lassi al solutions are found too. The work is an extension of the work [7℄, where a suitable global existen e small data urve is studied. In the sub riti al ase, we give almost pre ise results for the lower bounds of the lifespan by using a suitable weighted Stri hartz estimate for the higher dimensional wave equation. 1. Introdu tion The system of the following wave equations (1.1) { ∂ t u−∆u = f(v), ∂ t v −∆v = g(u), (here ∆ is the Lapla e operator in R;n ≥ 2) an be onsidered as an evolution problem asso iated with the Hamiltonian system (1.2) { −∆u = f(v), −∆v = g(u). The study of the existen e of small data solutions for the Cau hy problem (1.3)  ∂ t u−∆u = |v|p, p > 1, ∂ t v −∆v = |u|q, q > 1,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation

The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

Modified F-Expansion Method Applied to Coupled System of Equation

A modified F-expansion method to find the exact traveling wave solutions of  two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...

متن کامل

Differential Transform Method to two-dimensional non-linear wave equation

In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003